This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

A NEW OXO-CENTRED, MIXED-VALENCE HETEROTRINUCLEAR COMPLEX, Mn(III)Ni(III)Mn(II)O(PhCOO), Py3 CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES

Hao Xu^a; Jianzhong Zou^a; Jinyu Li^a; Zheng Xu^a; Xiaozeng You^a; Guochong Guo^b; Jinshan Huang^b ^a Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, P. R. China ^b Fujian Institute of Research on the Structure of Matter, Academia Sinica Fuzhou, P. R. China

To cite this Article Xu, Hao , Zou, Jianzhong , Li, Jinyu , Xu, Zheng , You, Xiaozeng , Guo, Guochong and Huang, Jinshan(1997) 'A NEW OXO-CENTRED, MIXED-VALENCE HETEROTRINUCLEAR COMPLEX, Mn(III)Ni(III)Mn(II)O(PhCOO)₆Py₃ CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES', Journal of Coordination Chemistry, 42: 1, 45 – 53

To link to this Article: DOI: 10.1080/00958979708045279 URL: http://dx.doi.org/10.1080/00958979708045279

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A NEW OXO-CENTRED, MIXED-VALENCE HETEROTRINUCLEAR COMPLEX, Mn(III)Ni(III)Mn(II)O(PhCOO)₆Py₃ CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES

HAO XU^a, JIANZHONG ZOU^a, JINYU LI^a, ZHENG XU^{a,*}, XIAOZENG YOU^a, GUOCHONG GUO^b and JINSHAN HUANG^b

^aCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing (210093), P. R. China; ^bFujian Institute of Research on the Structure of Matter, Academia Sinica Fuzhou, P. R. China

(Received 3 June 1996; In final form 18 October 1996)

A new mixed-valence heterotrinuclear complex, Mn(III)Ni(III)Mn(II)O(PhCOO)₆Py₃, was synthesized using NBu₄MnO₄ as an oxididant. In the reaction, Ni(II) was oxidized to Ni(III) while Mn(VII) was reduced to Mn(II) and Mn(III). Crystals are monoclinic, space group *C2/C*, with *a* = 58.93(4), *b* = 11.784(3), *c* = 24.883(9) Å, β = 100.64(4)*, *V* = 16983(13) Å, ³ and *Dc* = 1.35 gcm⁻³ for *Z* = 12. The crystal structure was solved by direct methods to final *R* = 0.083, *R* ω = 0.095. There are two kinds of trinuclear species in the unit cell. One is valence delocalized with Ni(2)—O(2) 1.86(2) Å and Mn—O(2) 1.92(1) Å (average value of Mn(II)—O and Mn(III)—O). The other is valence localized with Ni(III)—O(1) 1.84(1) Å, Mn(III)—O(1) 1.88(1) Å and Mn(II)—O(1) 1.97(1) Å. Variable temperature (1.5–300K) magnetic susceptibilities indicated an antiferromagnetic exchange interaction among the three metal ions.

Keywords: heterotrinuclear; mixed-valency; Nickel(III); X-ray structure; magnetic properties

INTRODUCTION

Trinuclear oxo-centred metal carboxylate assemblages of general composition $[M_3(O_2CR)_6L_3]^{n+}$ have been of intense interest for several decades.¹ These compounds serve as important models to study magnetic exchange interactions between metal ions with almost the same geometry^{2–7} and as precursors of larger multinuclear assemblies whose novel magnetic properties are only now being

Author for correspondence.

realized.⁸⁻¹² These complexes have been limited to trinuclear¹² and mixed-metal trinuclear species.¹³⁻¹⁵ Of them, the manganese compound has been most throughly studied on magnetic,² spectroscopy¹⁶ and catalysis¹⁷ grounds because there is strong coupling between localized d^5 electron configurations presumably through the central μ_3 -O atoms between the manganese atoms.

We have recently synthesized and isolated two trinuclear, oxo-centred carboxylate complexes in which there are two manganese atoms and one other metal atom (cobalt,¹⁸ nickel) with oxidation state II and III to the two manganese atoms and III for the other metal. The molecular structures and variable temperature susceptibilities of the nickel species has been determined.

EXPERIMENTAL

Measurements

Benzoic acid, Ni(OAc)₂, pyridine, absolute ethanol and CH₃CN were used as received. Elemental analyses for carbon, hydrogen and nitrogen were determined on a Perkin Elmer 240C analyzer. X-ray photoelectron spectra (XPS) were recorded on a VG MK II spectrometer using Mg K_{α} radiation and charge transfer correction with respect to the binding energy of C_{1S}. Variable temperature (1.5–300K) magnetic susceptibility measurements of the title complex were carried out on a CF-1 ESM magnetic balance at 1.2 T magnetic field.

Preparation

Preparation of NBu₄MnO₄ followed the procedure in reference 19. $Mn_2Ni(PhCOO)_6(Py)_3$.

Some 4.05 g of Ni(OAc)₂ and 15 g of benzoic acid dissolved in 40 cm³ of pyridine forming a blue solution, to which 2.28 g of NBu₄MnO₄ was slowly added with stirring. After reacting for 10 mins, pyridine was evaporated under reduced pressure, and a brown oily slurry was obtained, to which 200cm³ of absolute alcohol was added with stirring; a precipitate deposited. The brown solid was filtered and washed three times with a little absolute alcohol, than redissolved in a minimum amount of acetonitrile and filtered. The filtrate was evaporated at room temperature for a few days, when black crystals were obtained Calc. for C₅₇H₄₅N₃O₁₃Mn₂Ni (%): C, 59.6; H, 4.0; N, 3.7; Mn, 9.6; Ni, 5.1. Found: *Anal.* C, 59.2; H, 4.2; N, 4.6; Mn, 8.6; Ni, 4.6%.

TRINUCLEAR COMPLEXES

X-ray Crystal Structure Determination

A cuboidal black crystal $(0.4 \times 0.3 \times 0.3 \text{ mm})$ was used for X-ray diffraction. Data were collected on a Rigaku AFC5R diffractometer at 296K using graphitemonochromatic MoK_{α} (0.71069 Å) radiation and $\omega/2\theta$ scan mode. All reflection in the range of 2 θ <46° were measured. Of 12137 independent reflections collected, 3325 observed reflections with $I > 3\sigma(I)$ were used in the structure calculation and all data were corrected for Lp factors and empirical absorption. The structure was solved by direct methods. Successive Fourier syntheses gave the coordinates of all the non-hydrogen atoms which were refined with anisotropic thermal parameters. All calculations were performed on a Micro VAX II computer using TEXSAN programs. Atomic coordinates for non-H atoms are given in Table I. Lists of H atom positions and anisotropic thermal parameters, together with observed and calculated structure factors are available on request, from the authors.

Atom	x/a	y/b	z/c	B(eq)
Nil	0.63860(6)	0.1495(3)	0.5525(1)	5.0(2)
Ni2	0.500	0.3327(4)	0.250	5.4(3)
Mnl	0.68848(5)	0.0220(3)	0.5493(1)	2.5(2)
Mn2	0.66866(5)	0.0491(3)	0.6645(1)	3.3(2)
Mn3	0.48148(5)	0.0950(3)	0.1903(1)	2.7(2)
01	0.6647(2)	0.078(1)	0.5890(6)	3.8(7)
02	0.500	0.175(2)	0.250	4(1)
03	0.6347(2)	0.054(1)	0.4817(6)	4.1(8)
O4	0.6652(3)	-0.061(1)	0.4920(6)	4.9(9)
05	0.6162(2)	0.040(1)	0.5798(6)	4.1(8)
O6	0.6354(3)	0.004(2)	0.6640(6)	6(1)
07	0.6363(3)	0.267(1)	0.6116(7)	6(1)
08	0.6610(3)	0.215(1)	0.6849(6)	5.4(9)
09	0.6572(3)	0.268(1)	0.5161(6)	4.8(9)
O10	0.6850(3)	0.162(2)	0.4969(6)	4.9(9)
011	0.7141(3)	0.107(2)	0.6008(7)	6(1)
012	0.7025(3)	0.093(2)	0.6801(7)	5(1)
O13	0.6951(3)	-0.130(1)	0.5870(7)	6(1)
014	0.6773(3)	-0.120(2)	0.6582(7)	6(1)
015	0.4514(2)	0.183(1)	0.1874(6)	3.9(8)
O16	0.4656(3)	0.353(1)	0.2149(7)	5(1)
017	0.4886(3)	0.205(2)	0.1276(6)	5(1)
O18	0.5099(3)	0.344(1)	0.1751(7)	4.6(9)
019	0.5307(2)	-0.022(1)	0.2590(6)	4.4(8)
O20	0.5087(3)	0.001(1)	0.1771(6)	5(1)
N1	0.6089(3)	0.229(2)	0.5128(7)	3(1)
N2	0.7139(3)	-0.033(2)	0.5052(7)	5(1)
N3	0.6728(3)	0.013(2)	0.7487(8)	4(1)
N4	0.4629(3)	-0.002(2)	0.1267(7)	4(1)
N5	0.500	0.516(3)	0.250	7(2)
Cl	0.6468(4)	-0.025(2)	0.4663(9)	3.0(5)

TABLE I Final fractional atomic coordinates and equivalent isotropic thermal parameters

TABLE I	(Continued)
---------	-------------

	、 <i>,</i>			
Atom	x/a	y/b	z/c	B(eq)
C2	0.6361(4)	-0.079(2)	0.4126(9)	3.7(5)
C3	0.6214(4)	-0.024(2)	0.374(1)	5.3(6)
C4	0.6141(5)	-0.072(3)	0.320(1)	7.2(8)
C5	0.6224(5)	-0.176(3)	0.312(1)	6.5(7)
C6	0.6364(5)	-0.236(3)	0.349(2)	9(1)
C7	0.6442(5)	-0.188(3)	0.399(1)	6.9(8)
C8	0.6743(5)	0.254(3)	0.496(1)	4 0(6)
C9	0.6821(4)	0.347(2)	0.465(1)	47(6)
CÍO	0.6971(5)	0.330(3)	0.430(1)	7 3(8)
CII	0.7060(6)	0.330(3)	0.400(1)	9(1)
C12	0.6965(6)	0.523(3)	0.403(1)	10(1)
C12 C13	0.6903(6)	0.525(5)	0.405(1)	10(1)
C14	0.0803(0)	0.340(3)	0.433(2) 0.468(1)	$\frac{10(1)}{77(8)}$
C14 C15	0.0726(3)	0.449(3)	0.400(1)	7.7(6)
C15	0.6473(4)	0.280(2)	0.002(1)	5.4(5)
	0.6412(5)	0.384(3)	0.000(1)	0.2(7)
C17	0.6329(3)	0.409(3)	0.741(1)	7.1(8)
018	0.6474(6)	0.511(3)	0.766(1)	8.7(9)
019	0.6315(6)	0.585(3)	0.740(2)	9(1)
C20	0.6187(6)	0.566(3)	0.691(2)	$\Pi(1)$
C21	0.6264(5)	0.461(3)	0.662(1)	7.7(8)
C22	0.6179(4)	-0.003(2)	0.625(1)	3.6(5)
C23	0.5983(4)	-0.069(2)	0.640(1)	4.5(6)
C24	0.5781(6)	-0.075(3)	0.608(1)	8.4(9)
C25	0.5588(6)	-0.138(3)	0.620(2)	11(1)
C26	0.5614(5)	-0.194(3)	0.669(1)	6.2(7)
C27	0.5810(5)	-0.175(3)	0.702(1)	7.0(8)
C28	0.5989(5)	-0.118(3)	0.690(1)	6.6(7)
C29	0.7150(4)	0.128(2)	0.650(1)	3.7(5)
C30	0.7346(4)	0.211(2)	0.677(1)	4.8(6)
C31	0.7465(5)	0.269(3)	0.641(1)	6.5(7)
C32	0.7631(6)	0.350(3)	0.666(2)	9(1)
C33	0.7665(6)	0.366(3)	0.720(2)	10(1)
C34	0.7564(6)	0.313(3)	0.757(2)	10(1)
C35	0.7390(5)	0.231(3)	0.730(1)	8.1(8)
C36	0.6876(4)	0.174(2)	0.625(1)	4.0(6)
C37	0.6915(4)	-0.301(2)	0.640(1)	5.1(6)
C38	0.6948(5)	-0.372(3)	0.600(1)	8(1)
C39	0.6982(6)	-0.490(3)	0.610(2)	9(1)
C40	0.7000(6)	-0.525(4)	0.662(2)	10(1)
C41	0.6995(6)	-0.450(4)	0.703(2)	11(1)
C42	0.6938(5)	-0.338(3)	0.694(2)	9(1)
C43	0 4493(5)	0.288(3)	0.091(2)	4 6(6)
C44	0.4265(4)	0.230(3)	0.173(1)	4 5(6)
C45	0.4080(4)	0.278(2)	0.148(1)	43(6)
C46	0.3875(4)	0.275(2)	0.176(1)	5.0(6)
C47	0.3850(5)	0.323(2) 0.438(3)	0.120(1)	5.0(0)
C48	0.0000(0)	0.438(3)	0.127(1) 0.150(1)	7.1(9)
C49	0.4730(5)	0.500(5)	0.130(1) 0.172(1)	6 4(7)
C50 ·	0.4237(3)	0.434(3)	0.1/3(1)	0.4(7)
C50	0.5017(5)	0.291(3)	0.132(1)	4.0(0)
C51	0.3093(4)	0.334(2)	0.081(1)	4.0(0)
C52	0.4998(3)	0.290(3)	0.033(1)	7.0(8)
053	0.5084(5)	0.328(3)	-0.015(1)	8.1(9)
034	0.5251(6)	0.406(3)	-0.008(1)	9(1)
055	0.5341(5)	0.455(3)	0.039(1)	8.1(8)

Atom	x/a	y/b	z/c	B(eq)
C56	0.5259(5)	0.417(3)	0.087(1)	6.5(7)
C57	0.5261(4)	-0.040(2)	0.209(1)	3.9(5)
C58	0.5410(4)	-0.116(2)	0.182(1)	4.9(6)
C59	0.5586(6)	-0.172(3)	0.216(1)	9(1)
C60	0.5724(7)	-0.259(4)	0.189(2)	12(1)
C61	0.5697(7)	-0.252(4)	0.133(2)	11(1)
C62	0.5502(8)	-0.210(4)	0.106(2)	13(1)
C63	0.5358(6)	-0.133(3)	0.128(2)	9(1)
C64	0.6069(4)	0.339(2)	0.512(1)	4.2(6)
C65	0.5868(4)	0.396(2)	0.488(1)	5.4(6)
C66	0.5679(4)	0.334(2)	0.465(1)	5.0(6)
C67	0.5692(4)	0.222(2)	0.462(1)	4.3(6)
C68	0.5910(4)	0.175(2)	0.490(1)	3.7(5)
C69	0.7132(4)	-0.134(3)	0.484(1)	4.7(6)
C70	0.7296(5)	-0.170(2)	0.457(1)	5.8(7)
C71	0.7467(5)	-0.098(3)	0.449(1)	8.1(9)
C72	0.7488(5)	-0.000(3)	0.469(1)	7.6(8)
C73	0.7311(5)	0.039(3)	0.499(1)	6.4(7)
C74	0.6661(4)	-0.084(2)	0.765(1)	4.4(6)
C75	0.6691(5)	-0.113(3)	0.820(1)	6.9(8)
C76	0.6797(5)	-0.038(3)	0.857(1)	6.1(7)
C77	0.6868(4)	0.060(3)	0.843(1)	5.9(7)
C78	0.6833(4)	0.085(2)	0.786(1)	5.2(6)
C79	0.4425(5)	-0.048(3)	0.131(1)	6.0(7)
C80	0.4296(5)	-0.120(3)	0.090(1)	7.9(8)
C81	0.4401(6)	-0.142(3)	0.046(1)	9(1)
C82	0.4610(6)	-0.089(3)	0.041(1)	8.3(9)
C83	0.4725(5)	-0.015(3)	0.085(1)	6.5(7)
C84	0.490(1)	0.566(6)	0.200(2)	19(2)
C85	0.4893(8)	0.695(5)	0.197(2)	17(2)
C86	0.500	0.717(6)	0.250	15(2)

TABLE I (Continued)

Crystal Data

 $C_{57}H_{45}N_3O_{13}Mn_2Ni$, M = 1148.6, monoclinic, space group C2/c, with a = 58.93(4), b = 11.784(3), c = 24.883(9) Å, $\beta = 100.64(4)^\circ$, V = 16983(13) Å³, and Dc = 1.35 gcm⁻³ for Z = 12, $\mu = 0.813$ mm⁻¹, R = 0.083 and $R\omega = 0.095$, $\omega = 1/\sigma^2(F)$.

RESULTS AND DISCUSSION

Crystal Structure

Acetate bridging $Mn(III)_2Ni(II)O$ species have been prepared by Cannon recently.¹⁵ The title compound Mn(III)Ni(III)Mn(II) was synthesized with Bu_4NMnO_4 as oxididant. X-ray photoelectron spectra of the title complex

display two peaks at 856.1 and 642.6ev. The former belongs to $Ni2P_{3/2}$ and the latter belongs to $Mn2P_{3/2}$.

The molecular structure is shown in Figure 1, and selected bond distances and angles are given in Table II. Each metal atom has slightly distorted octahedral coordination geometry with four oxygen atoms from bridging benzoate groups, a μ_3 -oxygen atom and a nitrogen atom of a terminal pyridine. The pyridine rings are essentially perpendicular to the trinuclear complex, probably as a result of increased steric interactions between the pyridine rings and the benzoate phenyl group. There are two kinds of Mn₂NiO species in the unit cell. One is valence localized in which the distances of three metal atoms to μ -O are 1.84(1), 1.88(1) and 1.97(1) Å, respectively. Considering the oxidation state of the metal atoms in the title compound and M-O the bond distances Mn(III)-O 1.863, Mn(II)-O 2.034 Å in [Mn(III)₂Mn(II)O (3-Cl-Py)₃(OAc)₆],²⁰ and Mn(III)-O 1.817 Å, Mn(II)-O 2.154 Å in $[Mn_3O(PhCOO)_6(Pyr)_2(H_2O)]^2$ and by analogy Mn(III)Co(III)Mn(II)O(PhCOO)₆Py₃¹⁸ we could classify the three M-O bonds as followings: 1.84(1) Å is of Ni(III)-O(1), 1.88(1) Å is Mn(III)-O(1) and 1.97(1) Å is Mn(II)—O(1). The other species is valence delocalized in which Ni(2)—O(2) is 1.86(2) Å, and Mn-O(2) (1.92(1) Å) is a statistical average of Mn(III)-O (1.88(1) Å) and Mn(II)--O (1.97(1) Å).

FIGURE 1 The molecular structures of (a): [Mn(III)Mn(II)Ni(III)O(PhCOO)₆Py₃] and (b), that of [Ni(III)Mn(II, III)₂O(PhCOO)₆Py₃].

	1.84(1)	Ni(1)—O(3)	2.07(2)
Ni(1)—O(7)	2.05(2)	Ni(1)—O(9)	2.08(2)
Ni(1)O(5)	2.05(1)	Ni(1) - N(1)	2.06(2)
Ni(2)—O(2)	1.86(2)	Ni(2)—O(18)	2.06(2)
Ni(2)O(16)	2.07(2)	Ni(2)N(5)	2.15(3)
Mn(1)—O(1)	1.97(1)	Mn(1)O(13)	2.03(2)
Mn(1)O(10)	2.08(2)	Mn(1) - O(4)	2.04(1)
Mn(1)O(11)	2.05(2)	Mn(1) - N(2)	2.11(2)
Mn(2)—O(1)	1.88(1)	Mn(2)—O(6)	2.03(1)
Mn(2)—O(12)	2.03(2)	Mn(2)O(14)	2.07(2)
Mn(2)O(8)	2.08(2)	Mn(2)—N(3)	2.11(2)
Mn(3)O(2)	1.92(1)	Mn(3)O(20)	2.03(1)
Mn(3)—O(15)	2.04(1)	Mn(3)O(19)	2.08(1)
Mn(3)—N(4)	2.09(2)	Mn(3)O(17)	2.13(2)
O(1)—Ni(1)—O(7)	96.7(6)	O(1) - Ni(1) - O(3)	96.9(6)
O(1)-Ni(1)-O(9)	93.6(6)	O(1) - Ni(1) - O(5)	94.5(6)
O(1) - Ni(1) - N(1)	178.8(7)	O(2)Ni(2)O(18)	93.8(5)
O(2)—Ni(2)—(16)	96.6(5)	O(2)—N(2)—N(5)	180.00
O(1)-Mn(1)-O(13)	99.1(6)	O(1) - Mn(1) - O(10)	93.1(6)
O(1)—Mn(1)—O(4)	93.5(6)	O(1) - Mn(1) - O(11)	91.9(6)
O(1) - Mn(1) - N(2)	177.3(7)	O(1)—Mn(2)—O(6)	95.8(6)
O(1) - Mn(2) - O(12)	94.6(7)	O(1) - Mn(2) - O(14)	94.9(7)
O(1)O(8)	94.7(6)	O(1) - Mn(2) - N(3)	178.7(8)
O(2)O(20)	92.3(6)	O(2)—Mn(3)—O(15)	98.3(6)
O(2)—Mn(3)—O(19)	93.8(6)	O(2) - Mn(3) - N(4)	175.8(7)
O(2)-Mn(3)-O(17)	96.2(6)	Ni(1) - O(1) - Mn(2)	20.9(8)
Ni(1)—O(1)—Mn(1)	120.8(7)	Mn(1) - O(1) - Mn(2)	118.2(7)
Ni(2) - O(2) - Mn(3)	119.4(5)	Mn(3)O(2)Mn(3)	

TABLE II Selected bond lengths (Å) and bond angles(°)

There are eight asymmetry units in the unit cell, and each contains 1.5 trinuclear complex units, $[Mn_2NiO(PhCOO)_6Py_3]$, in which one trinuclear unit has bond delocalized structure and the other half trinuclear unit has bond localized structure.

Magnetic Properties

Variable temperature (1.5K–300K) magnetic susceptibility data have been recorded for a microcrystalline sample of the title complex. As seen in Figure 2, the effective magnetic moment (μ_{eff}) per molecule decreases slowly down to 70K (5.8 μ_B) below which it decreases quite rapidly (6.12 μ_B at 35K to 2.2 μ_B at 1.5K). This indicates that there is weaker antiferromagnetic exchange at T > 70K and stronger antiferromagnetic exchange at T < 35K among the three metal atoms.

FIGURE 2 Temperature dependence of the magnetic susceptibility χ_{M} ($\Box\Box\Box$) and the effective magnetic moment μ_{eff} (•••) for the title complex.

Acknowledgments

This work was supported by a grant for a key research project from the State Science and Technology Commission, the National Nature Science Foundation of China and the Beijing Zhongguancun Associated Centre of Analysis and Measurement.

References

- L.A. Welo, *Philos. Mag.*, 7 Ser., 481 (1928).; B.N. Figgis and G.B. Robertson, *Nature (London)*,
 205, 694 (1965); A. Earnshaw, B.N. Figgis and J. Lewis, *J. Chem. Soc. (A)*, 1656 (1966);
 S.C. Chang and G.A. Jeffrey, *Acta Cryst.* B26, 677 (1970); S. Vemura, A. Spencer and
 G. Wilkinson, *J. Chem. Soc. Dalton.*, 2565 (1973); F.A. Cotton and W. Wang, *Inorg. Chem.*,
 21, 2675 (1982); R.D. Cannon and R.P. White, *Prog. Inorg. Chem.*, 36, 195 (1988).
- [2] A. Earnshaw, B.N. Figgis and J. Lewis, J. Chem. Soc. A., 1656 (1966).
- [3] L. Dubiki and P. Day, Inorg. Chem., 11, 1868 (1972).
- [4] B.S. Tsukerblat, M.I. Belinskii and B.Y. Kuyavskaya, Inorg. Chem., 22, 995 (1983).
- [5] J.B. Vincent, H.R. Chang, K. Folting, J.C. Huffman, G.C. Christou and D.N. Hendrickson, J. Am. Chem. Soc., 109, 5703 (1987).
- [6] S.M. Oh, D.N. Hendrickson, K.L. Hassett and R.E. Davis, J. Am. Chem. Soc., 106, 7984 (1984).
- [7] S.M. Oh, D.N. Hendrickson, K.L. Hassett and R.E. Davis, J. Am. Chem. Soc., 107, 8009 (1985).
- [8] G. Christou, Acc. Chem. Res., 22, 328 (1989).
- [9] J.B. Vincent, C. Chrisrmas, H.R. Chang, Q. Li, P.D.W. Boyd, J.C. Huffman, D.N. Hendrickson and G. Christou, J. Am. Chem. Soc., 111, 2086 (1989).

TRINUCLEAR COMPLEXES

- [10] D.W. Low, D.M. Eichhorn, A. Draganesco and W.H. Armstrong, Inorg. Chem., 30, 878 (1991).
- [11] D.F. Harvey, C.A. Christmas, J.K. Mccusker, P.M. Hagen, R.K. Chadha and D.N. Hendrickson, Angew. Chem., Int. Ed. Engl., 30, 598 (1991).
- [12] Inorg. Chem., 32, 3025 1993.
- [13] A.B. Blake, A. Yavari, W.E. Haffield and C.N. Sethulekshmi, J. Chem. Soc., Dalton, 2509 (1985).
- [14] Hao Xu, Jin-Yu Li, Jian-Zhong Zou, Zheng Xu, Xiao-Zeng You and Gou-Cong Gou, Polyhedron in press.
- [15] R.D. Cannon, V.A. Jayassooriya, L. Montri, S.K. Bollen, W.R. Sanderson, A.K. Powell and A.R. Blake, J. Chem. Soc. Dalton, 2006 (1993).
- [16] L. Dubicki and R.L. Martin, Aust. J. Chem., 22, 701 (1969); L. Dubicki, P. Day, Inorg. Chem., 11, 1868 (1972).
- [17] L-L Song, K Chen, Chem. J. of Chinese Univer., 5, 569 (1991).
- [18] H. Xu, J.-Z. Zou, J.-Y. Li, Z. Xu and X.-Z. You, Polyhedron, in press.
- [19] T. Sale and M.V. Sargent, J. Chem. Soc., Chem. Commun., 253 (1978).
- [20] A.R.E. Baikie, M.B. Hursthouse, L. New, P. Thornton and R.G. White, J. Chem. Soc., Chem. Commun., 684 (1980).
- [21] J.B. Vincent, Hsiu-Rong Chang, K. Folting, J.C. Huffman, G. Christou and D.N. Hendrickson, J. Am. Chem. Soc., 109, 5703 (1987).